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a b s t r a c t

It is well-known that single hidden layer feed-forward neural networks (SLFNs) with at most n hidden

neurons can learn n distinct samples with zero error, and the weights connecting the input neurons and

the hidden neurons and the hidden node thresholds can be chosen randomly. Namely, for n distinct

samples, there exist SLFNs with n hidden neurons that interpolate them. These networks are called exact

or integrable functions) not all exact interpolation networks have good approximation effect. This paper,

by using a functional approach, rigorously proves that for given distinct samples there exists an SLFN

which not only exactly interpolates samples but also near best approximates the target function.

Crown Copyright & 2010 Published by Elsevier B.V. All rights reserved.
1. Introduction

An important reason for the popularity of feed-forward neural
networks in many applications is their universal approximation
property. The single hidden layer feed-forward neural networks
(SLFNs) are mathematically expressed as

Ns,nðxÞ :¼
Xn

k ¼ 1

cksðwk � xþykÞ, ð1Þ

where the output weights ckAR, the thresholds ykAR, xARd

denotes the input to the network, and wk’s are the input weights. In
many fundamental network models, the activation function s of
the networks satisfies the so-called sigmoidal condition, i.e.

lim
x-1

sðxÞ ¼ 1, lim
x-�1

sðxÞ ¼ 0:

Theoretically, by a proper choice of the thresholds and weights,
the SLFNs can approximate any continuous target function on any
compact set with arbitrary small error. It was proved by Cybenko
[5] and Funahashi [6] that any continuous function can be
approximated on a compact set with uniform topology by a
network of the form given in Eq. (1), using any continuous and
sigmoidal activation function. Hornik et al. [8] showed that any
measurable function can be approximated with such a network.
Various density results on SLFN approximations were later
10 Published by Elsevier B.V. All r
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established by many authors using various methods, for more or
less general situations: [18,4,3,9,10,13].

In applications SLFNs are trained using finite input samples. It is
known that n arbitrary distinct samples (xi,fi) (i¼1,2,y,n) can be
learned precisely by SLFNs with n hidden neurons. These networks
are also called exact interpolation networks for the samples.
Recently, a novel learning method for SLFNs named extreme
learning machine (ELM) algorithm was proposed by Huang et al.,
and which has been widely studied in [12–15]. As indicated in
[11–15], the SLFNs with at most n hidden neurons can learn n

distinct samples with zero error, and the weights connecting the
input neurons and the hidden neurons and the hidden node
thresholds can be chosen randomly.

Several proofs on the existence of exact interpolation networks
have been proposed in [16,17,22,23]. Recently, Llanas and Sainz [19]
studied the existence of exact interpolation networks and the
construction of approximate interpolation networks. Llanas and
Lantarón [20] studied Hermite interpolation by SLFNs. In [1] a type
of SLFNs, which could be used to approximately interpolate any set of
distinct data with arbitrary precision, was presented, and the modulus
of continuity of function was used as a metric to characterize the rate
of convergence of the approximate interpolation networks.

Although SLFNs with n neurons can exactly interpolate n

samples, neither exact interpolation networks nor approximate
interpolation networks guarantees the good approximation prop-
erties of the interpolants. In some practical applications, ones
usually need to find a tool that learns the given samples very well,
and simultaneously approximates target function in a prescribed
error. So it is natural to raise the question: Can we find an SLFN that
not only exactly interpolates the given samples but also simulta-
neously approximates the target function very well? The main
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purpose of this paper is to give an affirmative answer to the
question. Namely, we will prove that there exist SLFNs which exact
interpolate any set of distinct data and simultaneously, near best
approximate the target function.

Our results show that such exact interpolation SLFN exists, and
the number of neurons depends on the separation radius of the
interpolation nodes. Concretely, if the interpolation nodes are near
equally distribute on [0,1], i.e. the separation radius q of the
interpolation nodes satisfy q� 1=n, where n is the number of the
interpolation sample, then the number of neurons of the exact
interpolation networks, N, satisfies N� n.

This paper is organized as follows. In Section 2 we will state the
main results of this paper. In Section 3 we will draws a conclusions
of this paper. The proofs of main results will be given in the
Appendix.
2. Main results

Let N and R denote the set of natural numbers and real
numbers, respectively. Let X ¼ fx0,x1, . . . ,xng �R denote a set of
distinct data, and ff0,f1, . . . ,fng �R denote a set of real numbers.
Then

fðx0,f0Þ,ðx1,f1Þ, . . . ,ðxn,fnÞg ð2Þ

is called the set of interpolation samples, and {xi}i¼0
n is called the

node system of interpolation.
If there exists an SLFN, Ns,n, formed as (1) such that

Ns,nðxiÞ ¼ fi, i¼ 0,1, . . . ,n, ð3Þ

then we say that Ns,n is an exact interpolation network for the
sample set (2). If there exists an SLFN, Ns,n, formed as (1) such that

jNs,nðxiÞ�fijoe, i¼ 0,1, . . . ,n

for positive real number e40, then we call Ns,n an approximate
interpolation network for the sample set (2).

Suppose that function f is continuous on [0,1], and
fxjg

n
j ¼ 0D ½0,1�. Let Fs,n be the set of all SLFNs formed as (1). We

say that an SLFN, Ns,n, near best approximates f if there exists an
absolute constant C such that

Jf ð�Þ�Ns,nð�ÞJrCEs,nðf Þ, ð4Þ

where J � J denotes the uniform norm on [0,1] defined by
Jf J¼maxxA ½0,1�jf ðxÞj, and

Es,nðf Þ ¼ inf
gAFs,n

Jf ð�Þ�gð�ÞJ

denotes the best approximation of f by SLFNs in Fs,n.
Our aim is to prove that there exist SLFNs satisfying (3) and (4).

The main result is as follows.

Theorem 1. Let X ¼ fx0,x1, . . . ,xngD ½0,1� be a set of distinct points,
and s be a bounded sigmoidal function on R. Denote by

qX ¼
1
2minia jjxi�xjj the separation radius of X. Then for every con-

tinuous function f defined on [0,1] there exists an SLFN, Ns,LAFs,L,
satisfies (3) and

Jf�Ns,LJr5Es,Lðf Þ, ð5Þ

where L¼ dð6ð1þJsJÞÞ=qXe, dte denotes the smallest integer number

not smaller than t, and JsJ¼maxtARjsðtÞj.

We will give the proof of Theorem 1 in the appendix.
To characterize the degree of approximation by SLFNs, we need

to introduce the modulus of smoothness of continuous function f as

oðf ,tÞ ¼ sup
0rhr t

max
x,xþhA ½0,1�

jf ðxþhÞ�f ðxÞj:

This modulus is usually used as a tool for measuring approximation
error. It is also used to measure the smoothness of a function and its
accuracy in approximation theory and Fourier analysis (see [7]).
The function f is called ðM,aÞ- Lipschitz continuous ð0oar1Þ,
which can be written as f ALipðM,aÞ, if and only if there exists a
constant M40 such that

oðf ,dÞrMda:

The following conclusion was established by Chen in [2]: ifs is a
bounded sigmoidal function, then for f AC½0,1� there exists an SLFN,
Ns,nAFs,n, such that

Jf�Ns,nJr ð1þJsJÞo f ,
1

n

� �
, ð6Þ

where C[0,1] is the space of continuous functions defined on [0,1].
Theorem 1 together with (6) yields the following Corollary 1.

Corollary 1. Under the conditions of Theorem 1, there exists an SLFN,
Ns,LAFs,L, which satisfies (3) and

Jf�Ns,LJr5ð1þJsJÞo f ,
1

L

� �
,

where L is the same as that in (5).

Theorem 1 gives the interpolation and approximation proper-
ties of the SLFN with bounded sigmoidal activation function. Here
we introduce another type of SLFNs with the activation functions of
analytic and non-polynomial function, which has the same inter-
polation and approximation properties as the SLFNs stated in
Theorem 1.

The following result has been proved in [24].

Proposition 1. Suppose that s has up to n+1 orders of bounded

derivatives on [0,1], and is not a polynomial with degree at most n+1.
Then for f AC½0,1�, there exists an SLFN, Ns,n, such that

Es,nðf Þro f ,
1

n

� �
: ð7Þ

Indeed, from the proof of Theorem 1 in the appendix, we know
that for any collection of functions, if the Jackson-type inequality
(7) holds, then we can get the following interpolation properties of
such collection of functions by using the same method in proving
Theorem 1.

Theorem 2. Let X ¼ fx0,x1, . . . ,xngD ½0,1� be a set of distinct points.

Suppose that s has up to n+1 orders of bounded derivatives on [0,1],
and is not a polynomial with degree at most n+1. Then for f AC½0,1�
there exists an SLFN, Ns,LuAFs,Lu, satisfies (3) and

Jf�Ns,LuJr5Es,Luðf Þ,

where Lu¼ d6=qXe, and qX ¼
1
2minia jjxi�xjj.

If the points in X satisfy the distribution: qX � 1=n, where A� B

means there exists an absolute constant C such that C�1ArBrCA,
then the number of neurons of the interpolation network, L,
satisfies L� n. By the definition of qX, we know that the condition
qX � 1=n shows that the nodes of interpolation arrange neither too
dense nor too sparse. The best case of such arrangement is xj ¼ j=n,
j¼0,y,n.

The following Corollary 2 is a special case of Corollary 1.

Corollary 2. Let X ¼ fx0,x1, . . . ,xngD ½0,1� be a finite set of distinct

points with qX � 1=n and s be a bounded sigmoidal function. Then for

f ALipðM,1Þ there exists an SLFN Ns,N such that Ns,N interpolates f on X

and satisfies

Jf�Ns,NJr
5Mð1þJsJÞ

N
,

where N is a positive integral number and N� n.
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3. Conclusions

Theoretically, SLFNs with at most n+1 hidden neurons can learn
n+1 distinct samples with zero error, and the weights connecting
the input neurons and the hidden neurons can be chosen ‘‘almost’’
arbitrarily. That is, there are exact interpolation networks for the
given distinct samples. However, for some approximated target
functions, such as continuous or integrable functions, not all exact
interpolation networks have good approximation effect.In this
paper, by using functional approach, it has been rigorously proved
that for n+1 arbitrary distinct samples (xi, fi) ðxiA ½0,1�,fiAR,i¼
0,1,2, . . .nÞ, there is an SLFN with at most L¼ dð6ð1þJsJÞÞ=qXe

hidden neurons and with any bounded sigmoidal activation
function can learn these distinct samples with zero error. Simulta-
neously, this SLFN is the near best approximant for continuous
target functions. For analytic non-polynomial activation function,
the similar results have also been obtained. The obtained results
show that such exact interpolation SLFN with good approximation
effect not only exists, but also the number of neurons of the SLFN
depends on the separation radius of the interpolation nodes.

From the view point of engineering, the training data set may be
the input-output data pairs of a system. Then the trained SLFN can
be used as the system model. So a main problem is if the SLFN
system model can retain most important dynamics of the system,
such as robustness with respect to different input disturbances
and so on.

To solve the question, an approach used in applications is that, in
addition to the input-output training data pairs, one still needs to
add some constraints, reflecting some important dynamic beha-
viors of the system, to the optimization process. In such a way, the
trained SLFN can sufficiently represent the system. In fact, the
performance of SLFNs is not only related to the output weight
matrix, also related to the selection of the input weight matrix as
well. How to properly select the input weights is also important for
the training of SLFNs. It is believed that some further work
involving the selection of the input weights may get the better
optimization results for applications.
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Appendix A

The proof of the main result is based on the following lemma,
which was stated in [21].

Lemma 1. LetY be a (possibly complex) Banach space,V a subspace of

Y, and Z* a finite-dimensional subspace of Y�, the dual of Y. If for every

z�AZ� and some g41, g independent of z*,

Jz�JY�rgJz�jVJV� ,

then for yAY there exists vAV such that v interpolates y on Z*; that is,
z*(y)¼z*(v) for all z�AZ�. In addition, v approximates y in the sense

that Jy�vJYrð1þ2gÞdistYðy,VÞ.

Now, let us prove Theorem 1. At first, we prove that there exists
a continuous function g satisfying the following properties:

(i) JgJ¼ 1, (ii) z�ðgÞ ¼ Jz�J, and (iii) oðg,eÞr2e=qX .
The details of proof will be given later. If g satisfies (i), (ii) and

(iii), then from (6) and (iii) it follows that there exists Ng
s,LAFs,L

such that

JNg
s,L�gJr ðJsJþ1Þo g,

1

L

� �
r

2ðJsJþ1Þ

qXL
:

For every b41 we assume that L¼ dð2ðbþ1Þð1þJsJÞÞ=ððb�1ÞqXÞe.
Then we have

JNg
s,L�gJr

b�1

bþ1
:

Furthermore, by (i) we also have

JNg
s,LJr

b�1

bþ1
þ1¼

2b
bþ1

:

Without loss of generality, suppose that z�AZ� satisfies Jz�J¼ 1.
Since z* is a linear operator and (ii) holds, there holds

1¼ Jz�J¼ z�ðgÞ ¼ z�ðg�Ng
s,LÞþz�ðNg

s,LÞ:

Hence, from

Jz�ðg�Ng
s,LÞJrJz�JJg�Ng

s,LJr
b�1

bþ1
,

we have

z�ðNg
s,LÞZ1�jz�ðg�Ng

s,LÞjZ1�
b�1

bþ1
¼

2

bþ1
:

Consequently,

Jz�J¼ 1r
bþ1

2
z�ðNg

s,LÞr
bþ1

2
Jz�jFs,L

JJNg
s,LJ

r
bþ1

2
�

2b
bþ1

JJz�jFs,L
J¼ bJz�jFs,L

J:

We apply Lemma 1 to the case in which the underlying space is
the space Y ¼ C½0,1�. Then we let Z� ¼ spanfdxi

gni ¼ 0, where dxi
is the

point evaluations operator. Finally, we take V ¼Fs,L. Thus by
setting b¼ 2, from Lemma 1 we deduce that there exists an
SLFN, Ns,LAFs,L, satisfying (3) and (5).

The only thing reminder is to construct the continuous function
g such that g satisfies (i), (ii) and (iii). In fact, for any
z� ¼

Pn
j ¼ 0 cjdxj

AZ�, let

gðxÞ ¼
Xn

j ¼ 0

sgnðcjÞ 1�
ðx�xjÞ

2

q2
X

 !
þ

, ð8Þ

where (t)+¼max{t,0}, and sgn(t) is the symbol function satisfying
sgn(t)¼1 for tZ0 and sgn (t)¼0 for to0.

From the definition, the continuity of g is obvious. For (8) we also
have if jx�xjjZqX , j¼ 0,1, . . . ,n then g(x)¼0. This means g(x)¼0
unless jx�xjjoqX for some xjAX. Moreover, on jx�xjjrqX ,
we have

gðxÞ ¼ sgnðcjÞ 1�
ðx�xjÞ

2

q2
X

 !
:

So

jgðxÞj ¼ 1�
ðx�xjÞ

2

q2
X

r jgðxjÞj ¼ 1:

All above yield jgðxÞjr1 for all xA ½0,1�. Since jgðxjÞj ¼ 1 for all xjAX,
we get JgJ¼ 1, which means g satisfies (i).

By using the definition of z* again, we obtain

z�ðgÞ ¼
Xn

j ¼ 0

cjdxj
gðxÞ ¼

Xn

j ¼ 0

cjgðxjÞ ¼
Xn

j ¼ 0

cjsgnðcjÞ ¼
Xn

j ¼ 0

jcjj ¼ Jz�J:

Thus (ii) holds.
Now, we prove that g satisfies (iii). We first deduce the following

estimate for guðxÞ

jguðxÞjr
2

qX
: ð9Þ

Indeed, if jx�xjj4qX for all xjAX, then g(x)¼0 in a neighborhood of
x, and guðxÞ ¼ 0. If there exists an xj such that jx�xjjrqX (by the
definition of g, we know that there is at most one xj satisfying the
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above condition), then

gðxÞ ¼ sgnðcjÞ 1�
ðx�xjÞ

2

q2
X

 !
, jx�xjjrqX :

Thus

guðxÞ ¼ �sgnðcjÞ
2

qX

x�xj

qX
, jx�xjjrqX :

So

jguðxÞjr
2

qX
:

This finishes the proof of (9).
Because of

jgðxþeÞ�gðxÞj ¼

Z xþ e

x
guðtÞ dt

����
����r

Z xþ e

x

2

qX
dt¼

2e
qX

,

we know from the definition of oðf ,tÞ that oðg,eÞr2e=qX , which
yields that g satisfies (iii).

This complete the proof of Theorem 1.
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